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Abstract

We present two algorithms for the separation of spectral features caused by atmospheric and

surface components in Thermal Emission Spectrometer (TES) data. One algorithm uses

radiative transfer and successive least squares fitting to find spectral shapes first for atmospheric

dust, then for water-ice aerosols, and then, fnally, for surface emissivity. A second independent

algorithm uses a combination of factor analysis, target transformation, and deconvolution to

simultaneously find dust, water ice, and surface emissivity spectral shapes. Both algorithms have

been applied to TES spectra, and both find very similar atmospheric and surface spectral

shapes. For TES spectra taken during aerobraking and science phasing periods in

nadir-geometry these two algorithms give meaningful and usable surface emissivity spectra that

can be used for mineralogical identification.



1. Introduction

One of the principal scientific objectives of the
Thermal Emission Spectrometer (TES) investigation

is to determine the composition and distribution of

surface materials [Christensen et at., 1992]. To do
this, one needs to retrieve surface emissivity spec-

tra from the TES spectra. However, this is not a

simple process. The spectral radiance that the TES
observes is a blackbody of the surface temperatures

modified by the surface emissivity and by atmospheric

absorption, scattering, and radiation. Because a com-
bination of factors combine to form the one final ob-

served quantity (spectral radiance), it is difficult to
determine the relative contributions of surface emis-

sivity and atmospheric opacity to observed spectral
features.

The TES spectra contain strong atmospheric spec-
tral features that yield a wealth of information about

the state of the atmosphere [see Christensen et al.,

1998; Conrath et al., this issue; Smith et al., this issue;
and J. C. Pearl et al., Mars water ice clouds: Observa-

tions by the Thermal Emission Spectrometer (TES)

during the first Martian year, submitted to Journal

of Geophysical Research, 1999 (hereinafter referred to
as submitted manuscript, 1999)]. These atmospheric

spectral features are often larger than those caused

by non-unit surface emissivity. This is especially true

of atmospheric dust. The spectral signature of at-

mospheric dust has similarities with those of possi-
ble silicate materials on the surface, which further

complicates the separation of surface and atmosphere
contributions. Because of the amount of atmospheric

information in these spectra and the similarity of at-

mospheric features to possible surface features, great
care must be taken in the determination and analysis

of surface emissivity spectra.

Because of the heavy influence of dust and water-

ice aerosols on infrared spectra, few studies have at-

tempted to interpret surface features in the thermal
infrared. Characterization of atmospheric effects has

been hampered by the limited spatial and temporal

coverage of the Mariner 6 and 7 infrared spectrom-

eter (IRS), Mariner 9 infrared interferometer spec-

trometer (IRIS), and telescopic observations and by

the limited spectral resolution of the Viking infrared

thermal mapper (IRTM) instruments. Previous at-

tempts to remove atmospheric effects have used ra-

tios of different regions [Pollack et al., 1990; Roush et
al., 1995; Moersch et al., 1997]. The ratios may con-

siderably reduce the atmospheric effects on the spec-

tra, but the ratio remains a complicated mixture of

two surface spectra. In addition, differences in atmo-

spheric conditions, topography, and emission angles

commonly introduce significant atmospheric artifacts

in ratio spectra.

We report here on two algorithms that can success-

fully separate the atmospheric contribution to the ob-

served radiance from the underlying surface emissiv-

ity spectrum. Although these two surface-atmosphere

separation (SAS) algorithms have different philoso-

phies and use very different mathematics, they yield

very similar results. The first algorithm, which we
will call the Radiative Transfer Algorithm, uses ra-

diative transfer and successive least-squares fitting to

find spectral shapes first for atmospheric dust, then
for water-ice aerosols, and finally for surface emissiv-

ity. The second algorithm, which we will call the De-
convolution Algorithm, uses a combination of factor

analysis, target transformation, and deconvolution to

simultaneously find dust, water ice, and surface emis-

sivity spectral shapes.

In the next section we describe the TES instrument

and the characteristics of the data used in this study.

In section 3 we describe the Radiative Transfer SAS

Algorithm. In section 4 we describe the Deconvolu-

tion SAS Algorithm. In section 5 we present a dis-

cussion and comparison of results from the two SAS

algorithms, and we provide a brief summary in section
6. It is not the purpose of this paper to perform an

analysis of the surface emissivity spectra that we ob-

tain. That analysis is presented in the accompanying

paper by Christensen et at., this issue (a).

2. Data Set

2.1. TES Instrument

The Thermal Emission Spectrometer (TES) is a

thermal infrared spectrometer with additional broad-
band visible and thermal channels [Christensen et al.,

1992]. Six detectors in a three-by-two array simulta-

neously take spectra covering the spectral range from
200 to 1600 cm -1 (6-50/_m), with a selectable sam-

pling of either 5 or 10 cm -1. A pointing mirror al-
lows TES to view from nadir to above both the for-

ward and aft limbs. For daytime spectra taken over

a warm (275 K) surface the signal-to-noise ratio in a

single TES spectrum is 400:1 at 1000 cm -1 and bet-
ter than 100:1 over the spectral range 200-1300 cm

-1 [Christensen, 1999].

Included in the spectral range covered by the TES

are features caused by CO2 and water vapor gas, dust



andwater-iceaerosols,andsurfacematerials.The
mainCO2gasabsorptioniscenteredat 667cm-t (15
/_m) although there are weaker, but important, CO,

absorptions centered at 550,790,961. 1064, 1260, and

1366 cm -t [Maguire, 1977]. Water vapor has absorp-
tions at 200-400 cm -1 and at 1400-1800 cm -1 that

can be seen in TES spectra. Dust aerosols have a
broad peak centered at 1075 cm-1 and nonnegligible

absorption throughout the entire spectrum. Water-
ice aerosols have a broad peak near 825 cm -1, a

sharper peak at 229 cm -1, and little absorption for

wavenumbers > 1000 cm -1. The most transparent

part of the overall spectrum is near 1300 cm -1.

2.2. Data Used in This Study

We report here on data taken during initial aer-
obraking (September 1997 to March 1998) and the

"science phasing" period (March-September 1998).

The primary requirement for producing a good sur-

face emissivity spectrum is to have a warm surface

(greater than ,-,250 K). High spatial resolution is also
desirable to minimize the number of mixed surface

components, as is relatively low atmospheric opacity.

To obtain surface emissivity spectra, we therefore use
daytime data taken near periapsis for an orbit dur-

ing science phasing. Surface temperatures were suf-

ficiently high, and atmospheric opacities were gener-
ally low [Smith et al., this issue]. As a test of these

algorithms, we also use data from an orbit acquired 4

months earlier during aerobraking which cover nearly

the same longitude. To retrieve the spectral shapes

of dust and water-ice aerosols, we have selected day-
time, periapsis data where the contribution from dust

or from ice dominates other atmospheric and surface

features. Table 1 gives a complete listing of all the

data used in this study.

3. Radiative Transfer Algorithm

The first algorithm we describe for the separation
of surface and atmospheric spectral components is

the Radiative Transfer Algorithm. It uses radiative

transfer and successive least squares fitting to deter-

mine component spectral shapes and amplitudes. The

TES radiance spectra are first converted to spectra of

equivalent opacity by assuming all deviations from

blackbody are caused by well-mixed, nonscattering

atmospheric absorbers.

Candidate spectra are fit with dust and water-

ice aerosol spectral shapes that are determined using
carefillly selected standard data sets (which are de-

scribed in sections 3.2 and 3.3). Bandfield et al. [this

issue] have demonstrated that except at the height of

large dust storms when dust opacities approach unity,

the spectral shapes of the dust and water-ice compo-

nents are essentially constant for the TES data col-

lected to date. When the residual in the fit is signifi-

cantly above the expected noise, we infer that there is

a third component contributing to the observed spec-

trum besides atmospheric dust and water-ice aerosols.

The spectral shape of this third component is then

solved for by finding the spectral shape that, along
with the dust and ice spectral shapes which are held

constant [Bandfield et al., this issue], best fits the

observed opacity spectrum. The resulting (surface)

spectral shape is then transformed from opacity to

emissivity.

3.1. Basic Equations and Assumptions

The first step in the Radiative Transfer Algo-

rithm is to convert the observed radiance spectrum

to an equivalent opacity spectrum. We accomplish

this by using the method described by Smith et

al. [this issue]. Neglecting the small contributions

from the solar beam and scattering from atmospheric
aerosols, and assuming a plane-parallel atmosphere,
the observed monochromatic radiance as a function

of wavenumber, Iobs(U), of Mars can be written as

lobs( ') = B[Ts,,,.r,,..']e

+ [,o(,.-,) B[T(r), u] e -Hu dr, (1)
a0

where e(u) is the surface emissivity at frequency u,

to(U) is the normal column-integrated aerosol opac-

ity, /t is the cosine of the emission angle, B[T,u] is
the Planck function, T_,_¢ is the surface temperature,

T(r) is the atmospheric temperature profile, and the

integral is performed from the spacecraft (at r = 0)

to the surface (at r0).

For each spectrum to be studied, (1) is used to find

equivalent opacity as a function of frequency. By as-

suming a well-mixed opacity source, the required at-

mospheric temperature profile T(r) can be converted

to T(p), a quantity retrieved from the 15-/_m CO__
band as described by Conrath et aL [this issue]. The

conversion from radiance to opacity allows the Ra-

diative Transfer Algorithm to directly account for at-

mospheric conditions and allows for the quantitative

retrieval of the relative opacities of atmospheric (and

surface) contributions.



By workingwithopacityspectra,thefinalsurface
spectrumisobtainedintermsofan"effectiveopacity"
insteadofemissivityasdesired.Usingtheassumption
that surfaceemissivitiesarenot too differentfrom
unity,wecanwrite

(0r) [1-,-(-) = (2)

where e(u)is surface emissivity and the derivative is
also a function of frequency. The derivative term is

computed numerically for each spectrum and aver-

aged over all spectra being examined to find a single

conversion from opacity to emissivity. The derivative

term is generally near unity and has a smooth slope

in frequency with higher absolute value at higher
wavenumbers.

3.2. Dust Spectral Shape

We assume that the spectral opacity of each aerosol

can be described in terms of a basic spectral shape

f(u) multiplied by a scaling factor A that varies from

spectrum to spectrum. The next step in the Radia-
tive Transfer Algorithm is to find the spectral shape of

the atmospheric dust aerosols outside the 15-ttm CO..

band. Dust is the most prominent spectral feature in

nearly every spectrum and is accounted for first. Fig-

ure 1 shows typical daytime spectra for three orbits

(61, 93. and 112, at L,= 234 °, 256 °, and 266 °, respec-

tively) over high-albedo areas in terms of equivalent

brightness temperature. The data from all three of
these orbits were taken over the Isidis Planitia region

(see Table 1). Clearly evident in these spectra are the

15-pro (667-cm -1) CO.. band and a broad absorption
from 800 to 1300 cm -1 caused by dust. Dust absorp-

tion exists at a lower level through the 15-pro CO..
band and continues on the low wavenumber side of

the CO2 band.

These spectra have very little contribution either
from water ice or from nonunit surface emissivity for

several reasons. First, high-albedo surfaces such as

Isidis Planitia have surface emissivity near unity in

the wavelength regions studied [Christensen, 1982,

1998]. Second, this seasonal and local time period
is one of relatively low water-ice cloud occurrence,

and these spectra are from regions not known for sig-

nificant water-ice cloud formation [Christensen, 1998;

Beish and Parker, 1990; Curran et al., 1973; Pearl et

al., submitted manu-

script, 1999].

To obtain the dust spectral shape, we average all

the opacity spectra from a small spatial region. Ap-
proximately 100-200 spectra are used for each orbit.

In a final step the contribution from four of the weak

CO.. absorptions (961, 1064, 1260, and 1366 cm -I)

are removed in a simple way by assuming that the

true dust spectral shape varies smoothly through each

CO., absorption and then performing a least squares

fit of the known shape of the CO.. bands to the data.

Figure 2 shows the resulting dust spectral shapes.

The spectral shape for each orbit has been normal-

ized to unity at its maximum value. The three shapes
are the same to our level of measurement uncertainty.

We use only the data from 320 to 540 cm -1 and from
800 to 1350 cm -1 because of the increased noise and

contribution from CO_ and water vapor outside those

regions. Water vapor has a number of weaker absorp-
tions extending to frequencies up 500 cm -1 that we

have not attempted to correct for. The exclusion be-
tween 540 and 800 cm -1 is because CO,_ is opaque in

that spectral interval.

For the remainder of the discussion of the Radia-

tive Transfer Algorithm we will assume that the dust

spectral shape is given by the average of the three
dust spectral shapes shown in Figure 2 and is the

same everywhere. A constant dust spectral shape im-

plies a constant dust composition and particle size

distribution in a column-averaged sense through the

atmosphere. Although this assumption may not be
valid in the middle of the initiation of a large dust

storm, Bandfield et al. [this issue] show that this ap-

proximation is good for all spectra collected to date
with 9-#m dust opacities < 0.5.

3.3. Water-Ice Spectral Shape

The next step in the Radiative Transfer Algorithm
is to find the spectral shape of atmospheric water-ice

aerosols. Figure 3 shows typical spectra for three or-

bits (33, 55, and 132, at L,=210 °, 229 °, and 276 °,

respective!y) over Arsia Mons, one of the three That-
sis volcanos. Besides the CO._ and dust features seen

in Figure 1, a broad absorption caused by water-ice
aerosols is clearly seen between 750 (at the edge of

the CO2 band) and 975 cm -t.

We assume that the spectral shape of dust is al-

ready known and is fixed. Then, we obtain the spec-

tral shape of water-ice aerosols by finding the one

spectral shape that, along with the fixed dust spec-
tral shape, best fits the observed opacity spectra. If

n spectral points are to be fit and m spectra are to be
used, then a least squares fit is performed over n+2m

variables. The first n variables describe the spectral

LFigur
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shapeofwaterice,andtheremaining2mvariablesde-
scribetheconcentrationoroverallscalingof thedust
andicespectralshapesfor eachspectrum.Wefit
100spectralpointsandtypicallyuseapproximately
50-100averagedspectra.

Thespectralshapethat weobtainfor waterice
in this wayis not unique.Anylinearcombination,
fi'ce, of our retrieved water-ice spectral shape and the
fixed dust spectral shape will fit the observed opacities

exactly as well as the the shape we originally found.
The difference will be that the derived concentrations

or opacities will be different for the two cases. Put

another way, there is an unknown amount of mixing
of the fixed dust spectral shape in our derived water-

ice spectral shape. This unknown amount of mixing
can be described by one single scalar value, o, which

applies to all the spectra being considered.

rico(U)= of ust(u) + f,co(u) (3)

We find this one extra parameter by imposing one

additional constraint. For this constraint we assume

that there is no correlation between small-scale vari-

ations in dust and water-ice opacities.

Our data come from the periapsis pass of an orbit,

and we therefore have narrow strips of data running

nearly north-south. To allow dust and water ice to

both have large-scale trends (that can be physically

or accidentally correlated), we impose the above con-
straint of noncorrelation by requiring that the deriva-

tives of opacity, A'(lat, Ion), with latitude be uncor-

related:

Z k,('0Adust (lat'l°n))01at \f 0A_ce (lat' l°n))=0-_at O.
spectra

(4)
Thus the constraint of noncorrelation applies only to

small-scale spectrum-to-spectrum variations in dust

and water-ice opacity, not to larger regional-scale gra-

dients.

The dust and water-ice opacities .4_tust,ic e are func-

tions of the single mixing coefficient. (_, in (3). Once a

value for the mixing coefficient, a, is found that satis-

fies (4), the true water-ice spectral shape can be com-

puted using (3). As with the dust spectral shape, the
four weak CO._ absorptions at 961. 1064, 1260, and
1366 cm -1 are fit for and removed, and the water-ice

spectral shape is normalized to unity at its greatest
amplitude (which occurs at 825 cm -I) as a final step.

Figure 4 shows the retrieved spectral shapes for

water ice. As was the case with dust, the ice spectral

shapes are quite similar for the three orbits. For the
remainder of the discussion we will assume that the

ice spectral shape is fixed and is given by the average
of the three spectral shapes shown in Figure 4.

3.4. Surface Temperature Ambiguity

The negative values in the spectral shapes in Fig-

ure 4 immediately call into question the physical

meaning of these spectral shapes. The reason for the

negative values is that there is an ambiguity in the de-
termination of surface temperature. To perform the

radiative transfer necessary to derive an opacity spec-

trum we must first adopt a surface temperature. The

most transparent part of the spectrum is at around

1300 cm -1, so we use the brightness temperature in

a small spectral window near that frequency (1285-

1315 cm -1) as an estimate of surface temperature.
This means that by definition in (1), opacity is zero

there.

We assume that for a given spectrum, opacity r(u)

has the form:

r(u) = Adust (lat, lon)fdust (u) + Aice(lat, Ion)lice(V),
(5)

where the f(u) functions are the spectral shapes that

we have been deriving and the A(lat, lon) parameters

describe the spectrum-to-spectrum opacity variation
of dust and water-ice aerosols.

However, if there is a nonzero opacity at 1300

cm -1, then there will be an error ATsurf in our surface

temperature. In opacity the error is

Or(v) (6)
rt(u) = ATsurf OTsurf"

This is a third term that we can add to (5). We can

combine the second (water-ice) term and the opacity

error term as

If,co(u)+ ( 0r(u)]Aice(lat, lon)
k,Aice Oat, lon) ] _Jk

(7)
Therefore the actual spectral shape can be the derived

shape plus any constant times Or(u)/OTsu_. In the
case of the water-ice spectral shape, there must be

a non zero opacity at 1300 cm -1 and hence an error

in surface temperature Ts_urr = constantxAice. The

surface temperature error required to bring all of the



spectralshapecurvesabovezero(andthereforebe
physical)istypicallylessthanor about1-2K forall
but themostextremeicyspectra.

Thissamesurfacetemperatureambiguityexistsfor
the dustspectralshapeaswellandwill alsoexist
whenwederivea surfaceemissivityspectralshape.
However,the erroris probablyverysmallfor dust
becausethe spectralshapeis everywherepositive.
Thissurfacetemperatureambiguitydoesnot affect
themathematicsof separatingthe water-icefeature
fromobservedopacityspectra.

3.5. Search for Spectra Not Well Fit By Dust
and Ice

Figure 5 shows the relative opacities of dust and

water-ice aerosols along the orbit 55 periapsis pass.

These opacities are obtained for each spectrum by
performing a least squares minimization to find the

best fitting scaling factors (opacities) given the pre-

viously retrieved (and fixed) dust and water-ice spec-

tral shapes. Recalling (5), fdust(u) and ._¢e(u) are

known and fixed. We solve for Adust(lat, lon) and

Aice(lat, Ion). Therefore the dust opacity shown rep-
resents the opacity at the dust absorption maximum

(1075 cm-1), where the spectral shape has unit am-

plitude. Likewise, the water-ice opacity represents the
opacity of water ice at 825 cm -1.

The profile of dust opacity closely follows the in-

verse of topography over the flank of Arsia Mons in
Figure 5. There are at least two large discrete ice

clouds apparent near the summit and on the southern

flank of Arsia Mons. The residual opacity shown in

Figure 5 is the mean absolute difference over the en-

tire spectrum between the opacity retrieved from the

observations and the opacity given by the fit. There-

fore the observed opacity spectra can be described by
dust and water ice alone to the level of about 0.01-

0.02 opacity averaged over the spectrum. This resid-
ual value indicates that to the level of the noise in

the data there is no surface emissivity contribution at

this location in these spectral regions.

Dust and water-ice opacities and the residual val-

ues are given in Figure 6 for orbit 219 (L_=305°).
Here there are variable amounts of dust, and there is

significant structure in the profile of water-ice opac-

ity. North of 20°N latitude, the residual is relatively

high, but it is noisy and rises in a systematic manner

consistent with the colder temperatures (and noisier

data) to the north. However, between about 15° and

35°S latitude there is a well-defined area with high
residual that is not caused by increased noise. Sur-

face temperatures are high, and the structure and rise
of the residual from about 0.01 to over 0.03 are much

higher than the peak-to-peak variability in the resid-
ual. Further examination shows that this rise in resid-

ual is very closely correlated with the low-albedo re-

gion Terra Cimmeria. It must be concluded that in

this region the derived spectral shapes of dust and wa-

ter ice alone do not accurately describe the observed

spectral shape of opacity and that there is an addi-

tional surface emissivity component contributing to

the observed spectrum.

3.6. Surface Emissivity Spectral Shape

We proceed to find the surface spectral shape in
much the same way as we did when we found the

water-ice spectral shape. Now we assume that the

spectral shapes of both dust and water ice are already
known and are fixed. A surface spectral shape is ob-

tained by finding a single additional spectral shape

that, along with the fixed dust and water-ice spectral
shapes, best fits the observed opacity spectra. If n

spectral points are to be fit and m spectra are to be

used, then a least squares fit is performed over n + 3m
variables. As before, the first n variables describe the

spectral shape of the surface and the remaining 3m

variables describe the concentration or overall scaling

of the dust, water ice, and surface spectral shapes for
each spectrum.

The problem of the mixing of spectral shapes is

again present, and this time both the dust and the

ice spectral shapes can mix into the surface spectral

shape, giving a new surface shape f_urf(u) with ex-
actly as good a fit:

= fll/dost(.) + + (s)

Because there are two scalar mixing coefficients, /31

and/3_, two additional constraints are required. Fol-

lowing the example of the derivation of the water-ice

spectral shape, the constraints chosen were that there
be no correlations between the latitude derivative of

surface effective opacity and either dust or ice opacity:

_-_ (OXsurf(lat, (0A_u_t (lat, Ion)
0,at ,on))t 0lat )=0

(9a)

,on,)( ,on,)speL_ctra \ 0lat 01at = 0.

(9b)



The concentrationsA'(lat, Ion) are functions of the

mixing coefficients. 31,.-, so the above pair of equa-
tions can be solved for 31,_-- The true surface effective

opacity shape, f_urf(u), can then be obtained from

(8), and the four weak CO2 absorptions at 961, 1064,
1260, and 1366 cm -t are fit for and removed.

The final step is to convert the surface effective

opacity spectrum into a surface emissivity spectrum.
We first define a new function, gsu_(U), which is the

surface spectral shape given in terms of emissivity:

(10)

Then, using (2), the surface emissivity _(u) at a given

location is given by

= 1-.4s  (lat, lon)gsu ( ), (11)

where Asurr is a parameter that describes the spectrum-

to-spectrum variation in the strength of the surface
emissivity feature. As stated earlier, the derivative is

computed for each spectrum and summed to form an

average conversion function.

Figure 7 shows the surface emissivity spectral shape
for orbit 219. As with the dust and ice shapes, there is

a surface temperature ambiguity here too. However,
because the spectral shape is positive very nearly ev-

erywhere, we believe that the surface temperature er-

ror for this spectrum is small (< 0.5 K). However, we
cannot rule out that there is some component (con-

stant × Oe(v)/OTsug) missing.

Figure 8 shows the same quantities as Figure 6

(opacities and residual for orbit 219) except that
the surface spectral shape shown in Figure 7 (con-
verted back to effective opacity) has been included

in the spectrum-by-spectrum fit for opacity. The re-

gion where a nonunit surface emissivity is required

to accurately reproduce the observed opacity spectra

is clearly seen from 15° to 35°S latitude. The slight
nonzero surface contribution north of 15°S latitude
is at or below the level of the residual and so can be

considered to be consistent with zero. Notice that the

dust opacity values (and to a lesser extent the water-

ice opacity values as well) are significantly lower in

the region where the surface contributes. This is be-
cause the spectral shape of the surface emissivity is

broadly similar to that of dust. This underscores the
fact that a full treatment of the analysis of a TES

spectrum requires consideration of both atmospheric
and surface features.

3.7. Discussion of Uncertainties

A number of steps must be performed in order to

obtain the surface spectral shape shown in Figure 7.

and uncertainty in the final spectrum is potentially

introduced at every step. First, the combination of
instrument noise in the original radiance spectra, cal-

ibration uncertainties, and uncertainty in the retrieval

of atmospheric temperatures leads to a probable er-

ror in the derived opacity spectra of as much as 0.05

(see the discussion of opacity uncertainties by Smith
et al. [this issue]). However, because we are primarily
interested in spectral shapes (not the overall scaling),

and we typically use of the order of 100 spectra in

finding the spectral shapes, these are a minor source
of uncertainty in our spectral shapes. The level of

these errors is indicated in the variation in the three

dust spectral shapes (Figure 2) derived from different
orbits and is < 2% of the maximum amplitude of the

spectral shape.

Of greater concern is the uncertainty in the _ti-
mation of mixing coefficients. Although well-defined

for a particular set of data, the assumption that opac-
ities must have zero correlation is ad hoc, and chang-

ing the limits of the data set can change the mixing
constants in (3) and (8). Experience shows that dif-

ferences of up to 10-20% in the mixing coefficients

are possible without significantly adding large corre-
lations between opacities. This means that up to 10-

20% of the dust or water-ice spectral shape could be
added or removed from the derived surface spectral

shape. Evidence of this can be seen in the water-ice

spectral shape (Figure 4), which shows variations of
5-7% where the dust spectral shape is largest (near

1000-1150 cm-1).

One empirical measure of the amount of uncer-

tainty in the surface emissivity spectral shape is to
derive the surface emissivity spectral shape for _ach
of the six TES detectors separately. Figure 9 shows

the results. As expected, a difference in mixing coeffi-

cients (especially the water-ice mixing coefficient from

detector 6) produces uncertainties of up to about 10%
in the final spectral shape. Notice that uncertainties

in the mixing coefficients tend to introduce primar-

ily large-scale slopes since the spectral shapes of dust
and water ice are both relatively smooth. Therefore

this exercise primarily gives information on the reli-

ability and repeatability of small-scale (< 100-cm -I)

features. This point is addressed again in section 5.1
when results from the Radiative Transfer Algorithm

are compared to those of the following section.

Figur
c



4. Factor Analysis and Deconvolution
Algorithm

The DeconvolutionAlgorithmis an alternative
SASalgorithmthatattemptstofit themeasuredTES
apparentemissivityspectrumin alinearleastsquares
mannerby usingbothatmosphericspectralshapes
andmineralspectralshapessimultaneously.Thede-
rivedweightsoftheatmosphericcomponentsarere-
movedfromtheoriginalTESspectrumto obtainthe
surfacespectralsignature.Thederivedweightsofthe
mineralcomponentsmaybenormalizedto estimate
surfacemineralogicalcomposition.

While atmospheric spectral properties are gener-

ally nonlinear, Bandfield et al. [this issue] have

demonstrated that warm daytime TES spectra may

be very closely approximated using linear combina-

tions of atmospheric spectral shapes. The high tem-

perature contrast between the Martian surface and

atmosphere, and the limited range of surface tem-

perature (--_260-290 K) used in this analysis, allows
this linear approximation to be accurate. The as-

sumptions and validity of a linear surface-atmosphere

separation will be described and addressed here. We
show here that the TES spectra can be fit with both

atmospheric and mineralogical spectral components
simultaneously to separate surface and atmospheric

signatures and to obtain atmospheric and mineralog-
ical concentrations.

4.1. Derived Atmospheric Shapes

From Target Transformation

Determining the spectral shape of the atmospheric

components present in the TES spectra is necessary
for the accurate separation of atmospheric compo-

nents from any surface signature present. Bandfield

et al. [this issue] have successfully isolated the spec-
tral shapes of both water-ice clouds and atmospheric
dust. Isolation of these shapes over a variety of data

subsets has established that the water-ice and atmo-

spheric dust spectral shapes remain constant with the

exception of the relative depth of C02 hot bands and

water vapor bands and slight variations in the water

ice.

In nearly all conditions the dust signature is present

in a high enough concentration that the dust spectral

shape can be derived by using spectra from the orbit
and local area of interest. Using a locally derived dust

spectrum in the technique presented here ensures the
accuracy of the weight and shape of CO._ hot bands

and water vapor relative to the atmospheric dust. If

a locally derived dust shape is unavailable, then it is

also possible to use several dust shapes from other re-

gions and orbits because most of the shape variation

may be accounted for with just two atmospheric dust

shapes with different atmospheric opacities.

The water-ice spectral shape is usually present at

a lower amplitude than the dust in the TES spectra.

However, its presence is nearly ubiquitous in the TES

aerobraking and science phasing orbit (SPO) data,

and it is important to separate its signature from the

surface spectrum for an accurate interpretation. If
water ice is present only at low levels (825-cm -1 opac-

ity less than _0.05), then the isolated water-ice spec-

tral shape is often noisy. As a result, two water-ice

spectral shapes that were isolated from orbits with a

high water-ice concentration are used in the Deconvo-
lution Algorithm. These two shapes cover the small

range of water-ice spectral shapes recovered to date

[Bandfield et al., this issue], which is likely caused
by differences in the particle size distribution. Expe-
rience shows that using a locally derived ice shape is

not necessary to produce an accurate separation of the
water-ice contribution because the range of water-ice

spectral shapes is not great and the contribution of
water ice to the shape of the measured spectrum is al-

most always much lower than that of the atmospheric

dust.

4.2. Spectral Library

In addition to having accurate atmospheric spec-

tral shapes, it is also important to include as many
mineral spectral components as possible to model the

surface. Sixty rock-forming mineral spectra were se-
lected from the Arizona State University Spectral Li-

brary [Christensen et al., this issue (b)] for use in
the Deconvolution Algorithm. The mineral spectra
selected cover a wide variety of mineral classes, in-

cluding carbonates, sulfates, oxides, and silicates.

4.3. Deconvolution Algorithm

The Deconvolution Algorithm provides a least squares

fit to the measured spectrum by using a linear com-

bination of atmospheric and mineral spectral shapes.

This algorithm has been used with excellent results in

determining a wide variety of rock compositions and

mineralogies [Ruff, 1997; Hamilton, this issue; Feely

and Christensen, 1999] from laboratory spectra. The

procedure for performing the least squares fit is mod-
eled after that of Ramsey and Christensen [1998] with

a slight modification that removes a constraint that

forces component sums closer to unity.



Becausea negativeconcentration for a particular

mineral is a possible solution to a least squares fit, the

Deconvolution Algorithm uses an iterative approach

that removes all components with negative concentra-

tions from the set of spectral shapes being fit. The

fitting is then repeated with the remaining spectral

shapes until only positive component concentrations
are derived. The same fitting procedure is then per-

formed again using all minerals similar in composition
to those remaining in the final iteration. For example,

if the final iteration contains positive concentrations

of only diopside and andesine, then the algorithm is

run again with a set of spectral shapes that includes
all feldspars and clinopyroxenes that are spectrally
similar to andesine and diopside but excludes all other

mineral spectra. This additional step reduces the pos-

sibility that a correct mineral is accidentally removed

in the iterative process.

4.4. Assumptions and Approximations

This Deconvolution Algorithm makes two basic as-

sumptions: (1) The measured apparent emissivity

spectrum can be modeled by using a linear combina-
tion of atmospheric and surface spectral shapes; this

assumes that surface spectra can be described using a

linear combination of individual mineral spectra and

that the spectral contribution of the atmosphere may

also be reproduced using a linear combination of at-

mospheric components. (2) All atmospheric and sur-

face spectral components in the measured TES spec-
trum are accounted for in the set of spectral shapes

used for the least squares fit.

It has been well established that thermal infrared

spectra of surfaces composed of multiple minerals may
be modeled by using linear combinations of each min-

eral spectrum weighted by the areal fraction of the
surface measured [Lyon, 1965; Thomson and Salis-

bury, 1993; Ramsay and Christensen, 1998]. Sev-

eral studies [ G illespie, 1992; Ramsay and Christensen,

1998; Feely and Christensen, 1999; Hamilton, this is-

sue] have used this property to demonstrate that min-
eralogical information may be retrieved from a mixed

spectrum by performing a least squares fit using a
mineral spectral library. The calculated concentra-
tion of each mineral spectral component represents

the areal fraction of the surface composed of each min-

eral. Concentration errors have been estimated to be

_5-15%. For this study, error in surface mineralogy

is estimated to be _15-20% because of lower spectral

resolution and a more limited spectral range used in

this study as well as the influence of the atmosphere

on TES spectra.

The Deconvolution Algorithm takes advantage of

the results of Bandfield et al. [this issue] that indi-

cate that the TES apparent emissivity spectra may

be closely modeled by using linear combinations of

atmospheric and surface spectral components. The
factor analysis and target transformation methods de-

scribed by Bandfield et al. [this issue] indicate that

warm, daytime TES emissivity spectra of uniform,

high-albedo regions may be modeled closely (within
0.010 RMS in all spectra over a region of high water-

ice cloud, dust, and topographic variability) by us-

ing only three components which can be accurately
isolated from the set of mixed spectra: atmospheric

dust, water-ice cloud, and blackbody spectral shapes.
When the factor analysis is performed by using Iow-

albedo region spectra, an additional component is de-

tected and is required to model the TES spectra.

A basic assumption in factor analysis as it is ap-

plied here is that each spectrum is a linear combi-
nation of its components. Subpixel spectral mixing

of surface composition has been demonstrated to be

linear in the thermal infrared, but the combination

of emission (surface) and transmission (atmosphere)

components in the spectra is more complex, and the
linearity of varying emissivity components combined

with varying transmission components must be con-

sidered.

The linear mixing of the surface materials in emis-

sion is given by

ciei = d (12)

i=1

and

}2 c, = 1 (13)
i=l

where ci is the areal concentration of each of the n

components, ei is the emissivity spectrum of each
of the components, and d is the measured spectrum.

When observing a surface through an absorbing at-

mosphere that contains materials of transmissivity

tt ..... ,_, the resultant measured value is

)?2c'e' =a, 114t
\i=1 2' j=l

where aj represents the concentration of each atmo-

spheric component, tj. In this form the measured
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spectrumis thesurfaceemissivitynmltipliedbythe
transmissivityoftheatmosphere.Herescatteringand
reemissionbyatmosphericaerosolsareneglectedsince
theopacityof dustandwatericeisgenerallyconsid-

erably less than unity [Smith et al.. this issue], and

surface temperature is much greater than the atmo-

spheric temperature. The system is not linear in this
form, and the original components cannot be obtained

through linear, least squares deconvolution. However,

an approximation may be made for (14) using the fol-

lowing relation:

x. y = ax + 13y + "ti. (15)

In this equation, x and y are the emissivity and trans-
missivity spectra being multiplied, i is a blackbody

spectrum, and o, /3, and 7 are constants. This ap-

proximation may be made because natural surface
emissivities are commonly close to unity (greater than

--,0.90) and atmospheric opacities are low (opacity less
than _0.3 at 1075 cm-1). Under these conditions

a typical basalt emissivity spectrum may be mod-
eled using the approximation given by (15) to within

0.0030 (RMS error between actual and modeled spec-
tra is 0.0009) at all wavelengths (Figure 10).

When (14) is rearranged using the relation from

(15), the following is obtained:

ciei +fl ajtj + _i = d,

j=l

which can be expanded and rewritten as

(16)

(_clel + oc._e2 + --" + crcnen)

+(_altl+fla,t2+...+13arntm)+Ti=d. (17)

As a result, a combination of emission from mixed

surfaces and transmission through varying concentra-
tions of atmospheric components can be expressed as

a linear system of equations. Because the original
factors have been multiplied by additional constants,

the concentrations derived from a deconvolution of

the measured spectrum will not be correct, but the

surface areal concentration of a component may be

recovered by

c_ci (18)
Ci -- n

_i=--10Ci

Recovery and identification are not limited to surface

spectral components. Atmospheric components are

also mixing in the same linear fashion and may be

recovered as well.

4.5. Results

As a preliminary application of this technique, at-

mospheric dust and water-ice spectral shapes were
isolated from a subset of orbit 219 data (Table 1)

by using the method of Bandfield et al. [this issue].
This data subset shows low atmospheric dust and ice

opacities and warm surface temperatures (_275 K)
and covers both high- and low-albedo regions. An av-

erage of 78 spectra covering a spectrally uniform area
of low albedo (Lambert albedo=0.12) were chosen for

the atmospheric removal. This region was chosen for

the initial application of this technique because low-

albedo regions have been found to have strong emis-

sivity spectral features [Christensen, 1982, 1998] and

they have a high thermal inertia (inertia = 6-8 10 -3
cal cm -2 s-t/2 K-l) [Kieffer et al. 1977; Palluconi

and Kieffer, 1981], which indicates the material on
the surface is dominated by particles > 300#m [Pres-

ley and Christensen, 1997]. Multiple scattering and
volume scattering effects become prominent in spec-

tra of surfaces with particle sizes less than _100 pm

[e.g., Hunt and Vincent, 1968; Hapke, 1981; Salis-
bury et al., 1987; Moersch and Christensen, 1995].

Larger particle size mixtures and rocks may be mod-

eled by using spectra of coarse grained (710 to 1000-

pro) minerals [Ramsey and Christensen, 1998; Feely
and Christensen, 1999; Hamilton, this issue], as in

this application.

The Deconvolution Algorithm uses the spectral in-
tervals 233-529 cm -1 and 794-1301 cm -I. The mea-

sured spectrum was fit by using the isolated dust and

water-ice spectral shapes (Figure 11) that were iso-

lated by using the method of Bandfield et al. [this is-

sue] together with the suite of mineral spectra. The fit
was performed at wavenumbers > 400 cm -1 because
of the limited wavelength range of the reference min-

eral spectra. However, as both the water ice and dust
are derived from the TES data themselves, the sur-

face spectrum could be recovered to 233 cm -1. The
deconvolution modeled the orbit 219 spectrum quite

well (Figure 12) with an R.MS error between measured

and modeled spectra of 0.00232.

The derived concentrations of the atmospheric com-

ponents were removed from both the measured and
modeled spectra to produce atmosphere-corrected TES
and modeled surface emissivity spectra (Figure 13).

The resulting surface spectrum contains broad, shal-

low absorptions at both _1000 and 400 cm -1 and is

Figure
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well modeled by derived mineral components. There
is no indication of residual water vapor, CO2, or wa-

ter ice in the surface spectrum. The surface spectrum

does contain broad absorptions that are somewhat

similar to the atmospheric dust, as they are both in-

dicative of silicate materials. However, there are sev-

eral important distinctions: (1) The ratio of the 400-

to 1000-cm -1 absorption depth is greater in the de-

rived surface spectra; (2) the atmospheric dust has a

positive slope with increasing wavelength from 300 to
500 cm -1, while the surface spectra contain a nega-

tive slope; and (3) the absorption near 1000 cm -1 of

the surface spectra is more rounded or slightly square

than the atmospheric dust absorption, which is more

V-shaped. In addition to providing a surface spectral

shape, this method also provides modal mineralogies
which are discussed in an accompanying paper [Chris-

tensen et al., this issue (a)].

5. Discussion

5.1. Differences Between the Two SAS

Algorithms

The two algorithms presented here for the separa-

tion of atmospheric from surface emissivity spectral
features differ in several key ways. The first is in the

data used by the algorithms. The Radiative Trans-

fer Algorithm incorporates radiative transfer by us-

ing equivalent opacity spectra. This is the natural

quantity to use when dealing with atmospheric con-
tributions to the spectrum but is somewhat awkward

for describing the surface emissivity. The Deconvo-

lution Algorithm uses equivalent emissivity spectra

as its starting point. This is the natural quantity

to use when describing the surface, but it cannot, in

general, give accurate quantitative abundances for at-

mospheric absorptions. Because of the mixed nature

of the problem, it is not immediately obvious which

data set is preferable, although using opacity does al-
low for a more quantitative evaluation of component

contributions.

The second major difference is in the computation

of spectral shapes. The Radiative Transfer Algorithm
uses a bootstrapping method of first finding the dust

spectral shape, then the water-ice spectral shape, and,

finally, the surface emissivity shape. Each of the pre-

vious shapes must be known before continuing to the

next step, and dust and water-ice spectral shapes de-
termined from outside the area of interest are used

to find the surface emissivity spectral shape. On the
other hand. the combination of factor analysis and the
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Deconvolution Algorithm can derive all three spec-

tral shapes (dust, water ice, and surface emissivity)

locally from one set of data. This advantage of the
Deconvolution Algorithm is lessened by the fact that

the dust and water-ice spectral shapes vary very little

[Bandfield et al., this issue].

A third difference is in the determination of a sur-

face emissivity spectral shape. The Radiative Trans-

fer Algorithm performs a completely unconstrained

fitting for the spectral shape which must then be cor-

rected using mixing coefficients for dust and water-ice

spectral shapes determined in a separate step. The
Deconvolution Algorithm performs a constrained fit-

ting by using a spectral library of mineral spectral
shapes. This avoids the extra step and associated

uncertainties of finding mixing coefficients that the

Radiative Transfer Algorithm has by allowing only

spectral shapes that are linear combinations of spec-
tra in the mineral library. However, this advantage is

also a drawback since the Deconvolution Algorithm

cannot produce the spectra of components that are

not in the spectral library as the Radiative Transfer

Algorithm can.

Finally, the Deconvolution Algorithm can also be

applied to find surface emissivity spectra on a spectrum-
by-spectrum basis (using dust and water-ice spectral

shapes taken from a larger set of spectra), while the

Radiative Transfer Algorithm requires at least a few

dozen spectra to get a meaningful surface emissivity

spectral shape and mixing coefficients.

5.2. Comparison of Surface Emissivity

Spectral Shapes

The two SAS algorithms described above are quite

different in their approach, yet the results are very
similar. Plate 1 shows a comparison of the surface

emissivity spectral shapes obtained from the Radia-
tive Transfer and the Deconvolution SAS Algorithms.

Results are shown for orbits .56 (L, -- 230 °) and 219

(L, = 30.5 °) which are within approximately 2 ° in
longitude of each other. Approximately the same lat-

itude range is covered by the data subsets from each
orbit. The atmospheric conditions between orbit 56

and "219 are fairly different with orbit .56 having twice

the dust opacity of orbit 219 Orbit .56 was soon after

the height of the Noachis dust storm [see Smith et al.,

this issue], and while this region (Terra Cimmeria) is

on the opposite side of Mars from where the core of
the dust storm was located, there was elevated dust

opacity in Terra Cimmeria (9-1lm opacity of 0.33) as
well as a marked decline in the amount of water-ice



clouds compared with orbit 219 [Pearl et al., submit-

ted manuscript, 1999].

The curves in Plate 1 actually show two differ-

ent comparisons. One is a comparison of results for

different orbits over the same location (orbit 56 ver-

sus 219), and the other is a comparison of the two

SAS algorithms (Radiative Transfer versus Deconvo-

lution). Comparison of results from the two differ-

ent orbits gives an indication of the precision with

which each algorithm can obtain a surface emissiv-

ity spectral shape. Comparison of results from the

two SAS algorithms gives an indication of the abso-
lute accuracy of the spectral shapes. Despite the dif-

ferences between atmospheric conditions during the
two orbits and the differences between the numeri-

cal approaches of the two SAS algorithms, the agree-

ment between all the spectra shown in Plate 1 is very

good. The difference between results for orbits 56 and

219 for each algorithm is less than 5% of the overall

amplitude of the spectral shape, and the difference
between the two SAS algorithms is everywhere less

than 20% of the overall amplitude. As before, the

smaller-scale (< 100-cm -1) spectral features are gen-

erally very reproducible between the spectra. Inter-

pretation of these spectra is beyond the scope of this

paper. Christensen et al. [this issue (a)] examine the

mineralogic implications of these surface emissivity

spectra in an accompanying paper.

The difference between results for orbits 56 and

219 from the Radiative Transfer Algorithm (black and

blue lines in Plate 1) is very close to the spectral shape
of water ice. In this case, although the mixing coef-

ficient for dust has been accurately determined, the

mixing coefficient for water ice appears to be in error

by ,-,20%. The retrieved water-ice opacity is noiselike
and < 0.01 and is consistent with there being no water

ice present at all at this time and place. Therefore,

the mixing coefficient for water ice is not well con-
strained. This difficulty can be overcome by holding

water-ice opacity to zero when fitting for the surface

spectral shape. Then, the water-ice mixing coefficient
must be zero and need not be computed. The fifth

(purple) line in Plate 1 shows the surface spectral

shape computed by using the Radiative Transfer Al-

gorithm and assuming water-ice opacity to be zero.

The agreement with the surface spectral shapes from
orbit 219 and with those obtained from the Deconvo-

lution Algorithm is noticeably better.
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5.3. Comparison of Dust and Water-Ice

Spectral Shapes

Figure 14 shows a comparison of dust and water-

ice spectral shapes obtained by the Radiative Trans-
fer and the Deconvolution Algorithms. The spec-

tral shapes from the Radiative Transfer Algorithm

are those shown in Figures 2 and 4. The spectral

shapes from the Deconvolution Algorithm have been
linearly rescaled to match the depths of the spectral

shapes from the Radiative Transfer Algorithm. The

agreement is quite good, considering the differences in
the two algorithms. The difference in the dust spec-

tral shape between 1025 and 1100 cm -1 is caused

by the inclusion of the CO2 hot bands in the spec-

tral shape derived in the Deconvolution Algorithm,

whereas these were separately removed in the Radia-

tive Transfer Algorithm. The amplitude offset in the
dust spectral shapes at 300-575 cm -1 is caused by

the difference between expressing the spectral shape

in terms of opacity and expressing the spectral shape

in terms of emissivity. The derivative Or/Oe in (2)
is a function of frequency, and so the amplitude of

an emissivity representation cannot be matched to an

opacity representation everywhere by a linear scaling.
The small difference between the two water-ice spec-

tral shapes at 300-575 cm-1 is again consistent with
the difference between an opacity and an emissivity

representation.

6. Summary

We have presented two algorithms that can suc-
cessfully separate the contribution of atmospheric and

surface emissivity spectral features from TES spectra

taken in the nadir-viewing geometry. Each algorithm

has advantages and disadvantages. We do not make a

recommendation of one algorithm over the other here.

We prefer to use both algorithms in parallel to check

results against each other. We feel that this gives

the maximum likelihood of obtaining a realistic and

accurate surface emissivity spectrum.

The two surface-atmosphere separation (SAS) al-

gorithms have been used to find spectral shapes for
atmospheric dust and water-ice aerosols and for sur-

face emissivity for several orbits. The results from the

two algorithms are in good agreement. The process

of producing a surface emissivity spectrum from the

TES data is difficult, and interpretation of the spec-

tra must be performed with care. However, we feel
that it is feasible to produce surface emissivity spec-

tra using the two algorithms described in this paper



and that the results are of sufficient quality that min-

eralogic interpretation is possible. Separation of the

atmospheric and surface contributions to a TES spec-

trum is also very important for proper understand-

ing of dust and water-ice aerosol opacity and spectral

shape. In particular, dust opacities can be signifi-

cantly overestimated if the nonunit surface emissivity

is not accounted for.

During the mapping phase of the Mars Global Sur-

veyor mission it will be possible to take advantage

of limb-geometry observations and emission angle se-

quences to improve upon these techniques. However,

when only nadir-geometry observations are available,

as is the case for the large majority of the TES data

taken during aerobraking and science phasing orbit,

the algorithms presented here will produce reliable

surface emissivity spectra.
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Figure 1. Typical daytime TES spectra containing only dust with very little contribution from water ice or nonunit

surface emissivity. Spectra are shown in terms of brightness temperature. These spectra were taken over Isidis

Planitia during the periapsis passes of orbits 61, 93, and 112 (L,= 234 °, 256 °, and 266 °, respectively).

Figure 2. Derived dust spectral shapes. We adopt the average (solid line) of the spectral shapes from orbits 61,

93, and 112 (L,= 234 °, 256 °, and 266 °, respectively) as our reference dust spectral shape.

Figure 3. TES spectra containing a large amount of water ice. Spectra are shown in terms of brightness temper-
ature. These spectra were taken near the Arsia Mons volcano during the periapsis passes of orbits 33, 55, and 132

(L_=210 °, 229 °, and 276 °, respectively).

Figure 4. Derived water-ice spectral shapes. We adopt the average (solid line) of the spectral shapes from orbits
33, 55, and 132 (L,= 210 °, 229 °, and 276 °, respectively) as our reference water-ice spectral shape.

Figure 5. Relative opacities of dust and water-ice aerosols along the orbit 55 (L,=229 °) periapsis pass. These

opacities are obtained for each spectrum by performing a least squares minimization to find the best fitting scaling

factors given the previously retrieved (and fixed) dust and water-ice spectral shapes. The topographic profile stands
out in reverse in the dust opacity. There are large discrete water-ice clouds near the summit and on the southern

flank of Arsia Mons. The residual is low throughout, indicating that the TES observed opacities are well fit by

dust and water ice alone.

Figure 6. Relative opacities of dust and water-ice aerosols along the orbit 219 (L,=305 °) periapsis pass. There
is a well-defined region of high residual between 150 and 35°S latitude. In this region the TES-observed opacities

are not well fit by dust and water ice alone. A nonunit emissivity surface is required to fit the observations.

Figure 7. Derived surface emissivity spectral shape for orbit 219 (L,= 305 °) spectra taken over Terra Cimmeria
(15°-35°S, 212°W). This spectral shape is in terms of emissivity, not in terms of opacity as with the dust and

water-ice spectral shapes shown in Figures 2 and 4.

Figure 8. As in Figure 6, except that now a surface with emissivity spectral shape shown in Figure 7 is also fit.
The area of high residual seen in Figure 6 directly corresponds to the region where there is a significant surface

contribution.

Figure 9. Derived surface emissivity spectral shape for orbit 219 (L,= 305 °) spectra taken over Terra Cimxneria
(15°-35°S, 212°W) for each of the six TES detectors. The data from each detector makes up an independent data

set, and so the spread ill these curves gives an indication of the uncertainties involved in the Radiative Transfer

Algorithm.

Figure 10. The original basaltic spectrum (solid line) can be accurately recovered (dashed-dotted line) from the

nonlinear emissivity-transmissivity system using a linear approximation. The residual error with a baseline of 1 is
shown for reference.

Figure 11. Atmospheric components isolated from orbit 219 (L,= 305°). Dust is shown as the solid line, and

water ice is shown as the dashed-dotted line. The shapes have been normalized from 0 to 1. Note the presence of

weak CO2 absorptions, especially at 1064 cm -1, and the numerous water vapor absorptions between 200 and 400

cm -1 present in the dust spectral shape.

Figure 12. Result of the linear least squares fit using the dust and water-ice spectral shapes shown in Figure 11
as well as a suite of 60 mineral spectra. The original TES spectrum (solid line) is modeled closely (dashed-dotted

line) with an RMS error of 0.00232.

Figure 13. The measured (solid line) and modeled spectra (dashed-dotted line) with the derived concentrations

of atmospheric water ice and dust removed. The mineral suite can model the surface spectrum closely. Analysis of
the surface spectral signature and the derived mineral percentages are discussed by Christensen et al. [this issue

(a)].
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Figure 14. Comparison of dust and water-ice spectral shapes obtained by the Radiative Transfer and the Decon-

volution Algorithms. The agreement is very good. Differences in the dust spectral shapes are caused by CO2 hot

bands at 1075 cm -1 and by the difference between an opacity (used by the Radiative Transfer Algorithm) and an

emissivity (used by the Deconvolution Algorithm) representation for the spectral shapes at 300-575 cm -1

Table 1. Key Parameters for the Sets of Data Used in This Analysis

Orbit Icks a Lat Long LT b Tsurf c Range d Emis e

Dust Spectral Shape

61 775-800 7°-ll°N 276°W 15.1 255 336-392 4-5
93 795-834 10°-15°N 269°W 13.6 265 322-408 2-4

112 905-935 ll°-21°N 263°W 12.9 260 584-672 48-70

Water-Ice Spectral Shape

33 1224-1362 21°-7°S 122°W 16.6 245 656-1122 0-1

55 993-1043 16°-7°S 122°W 15.3 275 994-1178 19-36

132 1198-1235 8°S-11°N l18°W 12.2 290 1198-1235 35-70

Surface Emissivity Spectral Shape

56 1021-1121 27°-10°S 214°W 15.3 285 1056-1440 1-32

219 1585-1675 25°-12°S 212°W 10.1 275 1520-1848 20-31

_TES uses "icks" to count event time during an orbit. They are used to identify
spectra. Each ick is 2 s in duration.

bLT is local time measured in a 24 hour Martian day beginning at midnight.

CT_urf is the approximate average surface temperature (K) for these icks.

dRange is the perpendicular distance from the surface in kilometers.

eEmis is the emission angle measured in degrees.

Plate 1. Comparison of surface emissivity spectral shapes obtained by the Radiative Transfer and the Deconvo-

lution Algorithms. Here, all spectral shapes are in an emissivity representation and so are directly comparable.

Orbits 56 and 219 (L,= 230 ° and 305 °, respectively) are separated by about 20 in longitude (Terra Cimmeria).

The fifth (purple) shape was obtained by the Radiative Transfer Algorithm with the additional assumption that

water-ice opacity is zero. The difference between the curves gives an indication of the uncertainties associated with

the two algorithms.
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